
The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

99

Workload Processing Method Considering Priority
Based on Hot Standby System in RSU

Jinwon Jeong1, Sejin Kim1, Joonmin Gil2, Kwangsik Chung3, Heonchang Yu1

1 Department of Computer Science and Engineering, Korea University, Seoul, 02841, Korea
2 Department of Computer Engineering, Catholic University of Daegu, Daegu, 38430, Korea

3 Department of Computer Science, Korea National Open University, Seoul, 03087, Korea
{jin4812, sejjj120, yuhc}@korea.ac.kr1, jmgil@cu.ac.kr2, Kchung0825@knou.ac.kr3

Abstract. In a connected vehicle environment, if the operation of the mobile
edge server is not guaranteed, the workload must be offloaded to RSU to
continuously maintain real-time sensor data processing. However, if an efficient
resource management is not performed within the RSU, which has a poor
computing resource environment, the safety of the vehicle may not be
guaranteed because urgent information cannot be received. Therefore, in this
paper, we propose a method to provide RSU service more stably by
constructing a Hot Standby system in RSU and conducting research to quickly
process workload based on priority.

Keywords: RSU, OBU, MEU, Container, Hot Standby System, Priority

1 Introduction

The main function of RSU (Road-Side Unit) is to facilitate communication among
vehicles, transportation infrastructure and other devices by transmitting data through
DSRC (Dedicated Short-Range Communication) technology according to industry
standards. RSU acquires necessary traffic information such as time, speed, and
vehicle location, and communicates with each other with the OBU (On-Board Unit)
of the driving vehicle using DSRC. Therefore, it is possible to prevent collisions
caused by traffic congestion and accidents of nearby vehicles through RSU. However,
since RSU has poor computing resources compared to data centers, there may be a
delay due to resource contention [1]. In other words, it may not be possible to deliver
the most urgent information to the OBU among the indiscriminate large amounts of
data entering the RSU. This can lead to additional accidents by impairing the safety of
the vehicle as it is not accurately recognized the situation around the road [2].
Therefore, in this paper, we propose a method to minimize the delay time that occurs
when processing workloads by building a hot standby system in RSU and to provide
efficient and stable services by adjusting resource allocation based on priority within
the limited computing resources of RSU.

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

100

2 Related Work

In the existing research, a study was conducted to keep real-time sensor data
processing by offloading the workload to RSU [3] when work in the smartphone-
based edge server developed to support fast response time and low network traffic to
provide services such as safety information and accident prevention for connected
vehicle is not guaranteed. Besides, the environment is configured as shown in Figure
1 to indicate a situation where communication between the OBU attached in the
vehicle and the Mobile Edge Unit (MEU) equipped with the edge server function on
the smartphone is impossible. The OBU consists of a Switcher and a Forwarder, and
the Switcher communicates with the Generator that plays the role of OBDⅡ (On-
Board Diagnostics) about connected vehicle sensor data and is in charge of
transmitting and receiving data with the MEU.

When the RSU receives vehicle information and sensor data from the OBU on
behalf of the MEU, the sensor data is transmitted to the RSU Manager through the
internal Forwarder. In the RSU Manager, a container is created and a workload is
processed in it to isolate the resources required to process sensor data received from
the OBU and to guarantee data processing performance. When the condition of the
vehicle and whether there is an accident is determined in the container, the analyzed
information is transmitted to the RSU Manager, and if it is determined that the
vehicle's condition is abnormal or an accident has occurred, it is also transmitted to
the cloud server. The Forwarder receives the analyzed information from the RSU
Manager and broadcasts it to other nearby OBUs.

Fig. 1. Existing Configuration of the RSU

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

101

However, since the RSU system proposed in the previous research creates a
container whenever it receives the first sensor data from a nearby vehicle, this may
cause an initial delay time. That is, there may be a problem in that the final delay time
between sending the first vehicle sensor data to the RSU and receiving the analyzed
sensor data information increases. Therefore, instead of the Cold Standby system that
creates a container every time a new request comes in, we propose a method to
process the workload in the Hot Standby system that directly offloads the workload
for the vehicle by creating a specific number of containers in advance. Besides, if
CPU contention occurs while processing a large workload in RSU, we propose a
priority-based resource scheduling method to quickly and reliably process the
workload offloaded to the container with high priority by adjusting the CPU share of
the container.

3 Proposed Systems

Hot Standby system enables continuous service provision by continuing to operate
without system interruption even if one or more nodes fail. Applying the Hot Standby
system to RSU can reduce the risk of unexpected errors that can significantly affect
vehicle safety by operating without system downtime due to container creations.
When creating a container, we can control the container's resource usage with various
options. If no options are entered, by default all resources on the host will be available
without restriction, which may lead to an imbalance in resource usage when running
multiple containers. The container's CPU-shares option allows us to set how much
CPU the container will occupy when there is contention for the CPU. In other words,
by setting weight on a container, we can set how much CPU the container can use
relatively. Therefore, it is possible to expect stable RSU services by increasing the
CPU share of containers that need to process emergency data and it can process
workloads in a short time providing emergency services.

3.1 Design

If the MEU determines that real-time sensor data processing is not possible, the
workload is offloaded to the RSU. When the RSU Manager receives vehicle
information and sensor data through the Forwarder, one of the pre-created containers
in the RSU Server with sufficient resources processes the workload. When the
container processes the workload and determines the status of the vehicle and whether
there is an accident, the analyzed information is delivered to the RSU Manager. The
Forwarder receives the analyzed information from the RSU Manager and broadcasts it
to other nearby OBUs. When the RSU receives the second sensor data from the
vehicle, the container of the vehicle is still maintained as it is, enabling continuous
data transmission and reception. However, if the vehicle sensor data no longer comes
in RSU within the time-limited, the container is destroyed.

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

102

Fig. 2. Proposed Configuration of the RSU

3.2 Resource Scheduling Method Based on Priority

In this section, we propose a priority-based resource scheduling method for efficient
resource management of containers in RSU. The terms required for algorithm
description and explanation of each term are shown in Table 1. RSU has very limited
computing resources, so resources must be carefully distributed and managed to each
container. Besides, in order to reliably and quickly process emergency data, it is
necessary to automate the scaling of container resources according to the priority of
adjusting the resources of the container.

When communication between the OBU and the MEU is impossible, in order to
offload the workload to the container in the RSU, the CPU and memory resource
usage required for offloading are compared with the remaining resources of the
container to determine whether to offload. If the container has enough resources, it
proceeds offloading and processes the workload. If there are not enough resources, it
tries offloading to another container. If the result of sensor data analyzed in the
container is determined to be normal data, the container is given weight according to
the relative order in which individual workloads are offloaded to each container. After
that, priorities for appropriate resource adjustment of the container are assigned. The
faster the offloaded order is than other containers, the larger the value for the
corresponding weight. If abnormal data is detected in the results of the sensor data
analyzed in the container, the weight assigned to the container according to the
relative order of offloading and weight assigned only when abnormal data is detected
are additionally assigned. Therefore, it is assigned a higher priority than the container
that derived the result determined as normal data. When prioritized, the CPU share of
each container is adjusted according to priority through the CPU-shares option.
Therefore, through this scheduling method, it is possible to expect an RSU service
that increases the CPU share of the container that needs to continuously process
emergency data in a situation where CPU contention occurs and processes the
workload in a short time.

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

103

Table 1. Terms and Description

Term Description
ܸ ܹ Workload of the vehicle node n
 A CPU utilization needed to offload the i୲୦ VW toܥ

j୲୦ container
 The remaining CPU utilization of the j୲୦ containerܥܴ
 A memory utilization needed to offload the i୲୦ VW toܯ

j୲୦ container
 The remaining memory utilization of the j୲୦ containerܯܴ
ܷ Decide whether to offload the i୲୦ VW to the j୲୦

container
 The analysis result of i୲୦ VW offloaded to j୲୦ containerܣ
ܲ The priority value of j୲୦ container where i୲୦ VW

offloaded
 A weight value based on the relative order where i୲୦ VWߙ

offloaded to j୲୦ container (The faster the order, the larger
the value)

 is abnormalܣ A weight value assign whenߚ

Container Resource Scheduling Algorithm

if ܥ < ܴ ܴ > ܯ andܥ ܯ

ܷ ← 1
else if ܥ > ܴ ܴ < ܯ andܥ ܯ

ܷ ← 0
end if
if ܷ == 1

run container’s workload
 ← i୲୦ Vehicle node’s stateܣ

else if ܷ == 0
 attempt to offload to another container
end if
if ܣ is normal
 ܲ ← ߙ
 j୲୦ container’s CPU share *= ܲ
else if ܣ is abnormal
 ܲ ← ߙ * ߚ
 j୲୦ container’s CPU share *= ܲ
end if

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

104

4 Experiments

In this experiment, the delay time between sending vehicle sensor data to RSU and
receiving the analyzed sensor data is measured and compared in the existing Cold
Standby system and the proposed Hot Standby system. Besides, we apply a priority-
based resource scheduling method to adjust CPU shares according to container
priority, then compare the measured workload processing time of each container and
validate the proposed method.

4.1 Experimental Setup and Procedures

For this experiment, as shown in Figure 3, an environment that can communicate and
process sensor data generated in a connected vehicle environment in real-time was
configured. The Generator is a program developed in C# language that sends vehicle
sensor data to OBU using actual vehicle sensor data, and the collected vehicle sensor
data is composed of CSV files. The environment of RSU and OBU is shown in Table
2.

Table 2. Experimental Environment

 RSU OBU
MODEL OptiPlex 3070 ETF-DO-02

CPU i7-9700 CPU @ 3.00GHz x 8 Quad ARM Cortex-A53
RAM 32GB 4GB

OS Ubuntu 18.04.4 LTS Linux 4.9.58

When the vehicle's sensor data is generated by the Generator, the sensor data is sent

to OBU1 via a web socket communication. OBU1 is unable to communicate with the
MEU, so it uses DSRC communication to communicate vehicle information and
sensor data to OBU2. And then OBU2 finally delivers this information and data to the
RSU via a web socket communication.

Fig. 3. Experimental Configuration between RSU and OBU

To compare the delay time until receiving a response from the RSU in two Standby
systems, it is assumed that there are 5 to 50 vehicle nodes around the RSU. For
example, if there are 5 vehicle nodes, the Generator transmits the sensor data of 5
vehicle nodes separated by vehicle number to RSU at the same time. Whenever RSU
receives sensor data, RSU analyzes and broadcasts it. Here, the delay time until one
vehicle node receives the analyzed sensor data of 5 vehicle nodes including itself

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

105

from the RSU is all measured, and the difference between the minimum delay time
and the maximum delay time is calculated. After performing this in each of the two
Standby systems, the difference value of the derived delay time is compared, and the
above process is performed according to the number of classified vehicle nodes.

The comparison of the workload processing time according to the priority-based
CPU share of the container was performed for 5 vehicle nodes, and only one of the 5
vehicle nodes was set to be analyzed abnormal data in RSU. Besides, to indicate the
situation where CPU contention occurs in RSU, the stress tool [4] was used to load
the CPU with 10 threads in each pre-created container. Assuming that each vehicle
node continues to transmit sensor data to the RSU at the same time, we measure the
time that each container has processed the workload after the CPU share has been
adjusted according to the priority of each container. After that, the values of the
workload processing time measured continuously in each container are compared,
separated by the number of times the workload is processed.

4.2 Experimental Results and Performance Analysis

Figure 4 shows the difference between the minimum delay time and the maximum
delay time after receiving all vehicle sensor data analyzed as many as the number of
vehicle nodes around the RSU in Cold Standby and Hot Standby systems. As the
number of vehicle nodes around the RSU increases, the difference in delay time tends
to increase in the existing Cold Standby system, but in the proposed Hot Standby
system, the change in the difference of delay time is very small. This shows the result
of reducing the delay time by not creating a container every time RSU receives the
vehicle's sensor data but creating a container in advance so that the workload is
processed immediately.

Fig. 4. Comparison of Delay Time in Cold Standby System and Hot Standby System

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

106

Comparing the workload processing time according to the priority-based CPU
share of the container is shown in Figure 5. While the CPU is kept busy, the initial
CPU share of the five containers processing offloaded workloads is maintained at the
same rate. Then, abnormal data is detected among sensor data analyzed in the third
container and CPU shares are adjusted according to the priority-based resource
scheduling method. At this point, the CPU share increased by about tenfold compared
to other containers. As the CPU share of the third container increases, it can be seen
that the container has a shorter workload processing time than other lower priority
containers, as shown in Figure 5. This shows that in a situation where CPU contention
occurs in the RSU, the CPU share of the container that needs to process urgent data is
increased and the workload is processed in a faster time.

Fig. 5. Comparison of Workload Processing Time Based on Priority

5 Conclusions and Future Work

In this paper, by constructing a Hot Standby system in RSU, which provides various
traffic information services, we proposed a method to minimize the delay time that
occurs when processing the workload. Besides, a method to provide efficient and
stable services by adjusting resource allocation according to priority within the
limited computing resources of RSU was proposed. As a result of applying the
proposed Hot Standby system and priority-based resource scheduling method, the
delay time until receiving the analyzed data from the RSU was reduced and
emergency data could be stably processed. Therefore, it is possible to expect a service
that guarantees the safety of the vehicle by preventing a dangerous situation that may
be encountered due to the failure to receive emergency services quickly.

The 4th International Conference on Interdisciplinary research on
Computer science, Psychology, and Education (ICICPE’ 2020)

December 21-23, 2020. Jeju Island, Korea. (Online)

107

However, in the method proposed in this paper, there is a limitation that
performance overhead may occur due to idle resources. It is because some containers
are not used among the pre-created containers. As a future study, we plan to study a
method for the creation of prediction-based dynamic containers to prevent the waste
of computing resources of RSU.

Acknowledgement

1. This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the
ITRC(Information Technology Research Center) support program (IITP-2018-0-01405)
supervised by the IITP(Institute for Information & communications Technology Planning &
Evaluation).

2. This work was supported by Institute for Information & communications Technology
Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00480,
Developing the edge cloud platform for the real-time services based on the mobility of
connected cars).

References

1. V. V. Paranthaman, Y. Kirsal, G. Mapp, P. Shah, H. X. Nguyen, "Exploiting resource
contention in highly mobile environments and its application to vehicular ad-hoc networks",
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3805-3819, Apr. 2019.

2. M. Fogue, J. Sanguesa, F. Martinez and J. Marquez-Barja, "Improving roadside unit
deployment in vehicular networks by exploiting genetic algorithms", Appl. Sci., vol. 8, pp.
86, Jan. 2018.

3. J. W. Jeong, J. H. Lee, J. M. Gil, H. C. Yu, "Workload Processing Method using Containers
in RSU", KINGPC, Aug. 2020.

4. https://linux.die.net/man/1/stress

