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$EVWUDFW� Universal sentence representations are an important open issue in 
natural language processing and must capture rich semantic information 
without task-specific fine-tuning. 9arious methods have been proposed for 
sentence embeddings. Still, the contrastive learning method that has the highest 
performance recently uses pre-trained language models. Sentence embeddings 
using contrastive learning is a method of learning to arrange sentences in a 
close space if the meanings are semantically similar and to place them farther 
apart if they are semantically dissimilar. In contrastive learning methods, 
unsupervised and supervised learning methods exist. In this paper, we propose 
an effective unsupervised learning method. In previous studies, the language 
model based on an unsupervised learning method learns by distinguishing the 
meaning of the sentence by itself. However, there is a limit to learning sentence 
representations only with information judged by one model because it can be 
learned biasedly. Therefore, in this paper, the performance of the existing 
model is improved by understanding the sentence pairs recommended from the 
semantic search. As a result, it shows a higher performance than the baseline in 
the STS tasks. 

.H\ZRUGV��Sentence Embeddings, Semantic Search, Contrastive Learning 

�� � � ,QWURGXFWLRQ�

Learning universal sentence representations must understanding rich semantic 
information of sentences. 9arious methodologies using pre-trained language models 
have been proposed to improve the performance of sentence embeddings. Still, the 
method showing the highest performance among them is the pre-trained language 
model applying contrastive learning. Contrastive learning is a method of learning by 
placing samples that are semantically close to each other and placing samples that are 
not semantically close to each other >1@. There are the unsupervised methods for 
sentence embeddings using contrastive learning and supervised methods. The 
unsupervised method is a method in which the model learns by distinguishing 
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between positive and negative samples in a large sentence corpus. The supervised 
learning method is learning a corpus with positive and negative labels. However, 
building labeled data reTuires a lot of resources. 

 
In this paper, sentence embeddings are performed using the unsupervised 

contrastive learning method. The unsupervised methods don't reTuire resources to 
build labeled data, but it shows lower performance than supervised learning terms of 
performance. In addition, there is a limit in that learning is biased because it grasps 
the relationship between samples by itself without any guide. Therefore, we 
recommend sentence sample pairs for contrastive learning from semantic retrieval 
using the pre-trained language models. As a result, the model that received the 
semantic search guide performs better than the baseline in STS tasks. 

�� � � &RQWUDVWLYH�/HDUQLQJ�ZLWK�6HPDQWLF�6HDUFK�

Traditional retrieval engines look for literal matches with Tuery sentences in a 
collection of text documents. These engines do not recognize synonyms, acronyms. 
Conversely, semantic search encodes the real values of Tuery sentences and returns 
for sentences close to a vector space. The sentence embeddings of all sentences 
represent the >CLS@ token. This architecture of semantic search is possible to 
overcome the disadvantages of the retrieval engine. We select the language model 
with the highest performance to use the semantic search model >1�@. The sentence 
similarity calculation uses cosine similarity. And, the semantic search recommend 
sentence pairs for contrastive learning based on the language model. Then, the model 
learns universal sentence representation utilizing the contrastive learning method 
proposed by >2@.  

ETuation (1) represents the training objective ࢏࢒ for contrastive learning. When a 
sentence pair recommended from ࡰ ൌ ሺ࢞࢏ǡ ࢓ୀ૚࢏ାሻ࢏࢞ � is given from semantic search, 
 ା are sample pairs returned with high scores. And, it takes the cross-entropy࢏࢞ and ࢏࢞
objective with an in-batch negative >�,�@. ࢏ࢎ and ࢏ࢎା are representations of ࢞࢏ and 
 ࣎ ା through the >CLS@ token of language models. where �0� is the mini-batch, and࢏࢞
is the temperature hyperparameter. And, ࢙࢓࢏ሺכǡכሻ�is the cosine similarity.�
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Our model evaluate in the STS dataset >�-11@. This data set consists of sentence 
pairs labeled with a similarity score between 0 and �. Spearman's correlation 
evaluated the performance, and the SentEval tool was used for evaluation. The 
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hardware environment performs in Google Colab Pro, and the parameter settings of 
the model are batch size��2 and learning rate��e-�. The proposed method and the 
baseline are tested in the same parameter setting for a fair evaluation. The 
experimental results are shown in the Table 1. The model selects as ܴܧܤ ௕ܶ௔௦௘, and 
the baseline is compared with the unsupervised method proposed by >12@. Due to the 
hardware specifications, we experimented with a small batch size. Therefore, it may 
differ from the performance presented in the paper. Compared with the baseline, the 
overall average score shows a higher performance when learning the positive sample 
recommended from the semantic search. The experimental results show the 
performance difference when using information judged by itself in one language 
model and when using information suggested by a language model with better 
performance. As a result, learning positive samples by relying on random masks for 
dropouts of their language models shows lower performance. This method show 
limitation because it judges similar and dissimilar sentences by itself. 

 
Table 1. Performance of sentence embedding on all STS tasks (Spearman’s 
correlation). 

0odel STS12 STS1� STS1� STS1� STS16 STS-B STS-R Avg 
BERT ����� ������ ����� ������ ����� ����� ����� ����� 
w�Semantic 
Search ������ ������ ������ ����� ������ ������ ������ ������

 

�� � � &RQFOXVLRQ�

In this paper, the performance of sentence embedding is improved by contrast 
learning using the semantic search method. The model selected ܴܧܤ ௕ܶ௔௦௘, which 
shows better performance than the baseline. The proposed method shows higher 
performance because it utilizes information from an external model. However, it is 
impossible to learn a sentence representation higher than the baseline unless a model 
better than the encoder that learns the actual sentence representation is used. 
Therefore, in the future, when learning sentence representation, the multi-task 
learning method will be developed so that the weights of the external language model 
can also be updated. 
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